4 years ago

Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation

Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation
In the present study, in vitro permeation experiments in a Franz diffusion cell were performed using different synthetic polymeric membranes and pig ear skin to evaluate a rivastigmine (RV) transdermal drug delivery system. In vitro-in vivo correlations (IVIVC) were examined to determine the best model membrane. In vitro permeation studies across different synthetic membranes and skin were performed for the Exelon® Patch (which contains RV), and the results were compared. Deconvolution of bioavailability data using the Wagner–Nelson method enabled the fraction of RV absorbed to be determined and a point-to-point IVIVC to be established. The synthetic membrane, Strat-M™, showed a RV permeation profile similar to that obtained with pig ear skin (R2 =0.920). Studies with Strat-M™ resulted in a good and linear IVIVC (R2 =0.991) when compared with other synthetic membranes that showed R2 values less than 0.90. The R2 for pig ear skin was 0.982. Strat-M™ membrane was the only synthetic membrane that adequately simulated skin barrier performance and therefore it can be considered to be a suitable alternative to human or animal skin in evaluating transdermal drug transport, potentially reducing the number of studies requiring human or animal samples.

Publisher URL: www.sciencedirect.com/science

DOI: S037851731630802X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.