5 years ago

RNA binding proteins regulate anabolic and catabolic gene expression in chondrocytes

Regulation of anabolic and catabolic factors is considered essential in maintaining the homoeostasis of healthy articular cartilage. In this study we investigated the influence of RNA binding proteins (RNABPs) in this process. Design Using small interfering RNA (siRNA), RNABP expression was knocked down in SW1353 chondrosarcoma cells and human articular chondrocytes. Gene expression and messenger RNA (mRNA) decay of anabolic (SOX9, Aggrecan) and catabolic (matrix metalloproteinase (MMP)13) factors were analysed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). RNA-electromobility shift assays (EMSAs) were used to investigate RNABP interactions with the SOX9 mRNA 3′ untranslated region (UTR). Immunohistochemical localisation of MMP13 and the RNABP human antigen R (HuR) was performed in E13.5 and E16.5 mouse embryo sections. Results SOX9 mRNA, mRNA half-life and protein expression were increased with siRNA targeting the RNABP tristetraprolin (TTP) in both HACs and SW1353s. TTP knockdown also stimulated aggrecan mRNA expression but did not affect its stability. RNA-EMSAs demonstrated that adenine uracil (AU)-rich elements in the SOX9 mRNA 3′UTR interacted with chondrocyte proteins with three specific elements interacting with TTP. HuR knockdown significantly increased MMP13 expression and also regulated the expression of a number of known transcriptional repressors of MMP13. HuR was ubiquitously expressed within mouse embryos yet displayed regional down-regulation within developing skeletal structures. Conclusion This study demonstrates for the first time how RNABPs are able to affect the balance of anabolic and catabolic gene expression in human chondrocytes. The post-transcriptional mechanisms controlled by RNABPs present novel avenues of regulation and potential points of intervention for controlling the expression of SOX9 and MMP13 in chondrocytes.

Publisher URL: www.sciencedirect.com/science

DOI: S1063458416010074

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.