4 years ago

Proteomics-based analysis of lung injury–induced proteins in a mouse model of common bile duct ligation

Lung injury is a life-threatening complication in patients with liver dysfunction. We recently provided an experimental lung injury model in mouse with common bile duct ligation. In this study, we aimed to characterize the pathologic and biochemical features of lung tissues in common bile duct ligation mice using a proteomic approach. Methods Common bile ducts of BALB/c mice, 8 weeks of age, were ligated operatively. CD31-expressing pulmonary cells were sorted with immunomagnetic microbeads, and protein profiles were examined by 2-dimensional gel electrophoresis. Based on the results of protein identification, immunohistochemistry and quantitative reverse transcription polymerase chain reaction were carried out in pulmonary and hepatic tissues. Results Two-dimensional gel electrophoresis revealed 3 major inflammation-associated proteins exhibiting considerable increases in the number of CD31-positive pulmonary cells after common bile duct ligation. Mass spectrometry analysis identified these proteins as SerpinB1a (48 kDa), ANXA1 (46 kDa), and S100A9 (16 kDa). Furthermore, the 3 proteins were more highly expressed in dilated pulmonary blood vessels of common bile duct ligation mice, in which neutrophils and monocytes were prominent, as shown by immunohistochemistry. More importantly, SerpinB1a mRNA and protein were significantly upregulated in the liver, whereas S100A9 and ANXA1 mRNA and protein were upregulated in the lungs, as shown by quantitative reverse transcription polymerase chain reaction and Western blotting. Conclusion We identified 3 proteins that were highly expressed in the lung after common bile duct ligation using a proteomics-based approach.

Publisher URL: www.sciencedirect.com/science

DOI: S0039606016308753

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.