5 years ago

Transcriptional profiling of male F344 rats suggests the involvement of calcium signaling in the mode of action of acrylamide-induced thyroid cancer

Transcriptional profiling of male F344 rats suggests the involvement of calcium signaling in the mode of action of acrylamide-induced thyroid cancer
Acrylamide (AA) exposure in 2-year cancer bioassays leads to thyroid, but not liver, adenomas and adenocarcinomas in rats. Hypothesized modes of action (MOAs) include genotoxicity/mutagenicity, or thyroid hormone dysregulation. To examine the plausibility of these two or any alternative MOAs, RNA-sequencing was performed on the thyroids and livers of AA-exposed rats, in parallel with measurement of genotoxicity (blood micronucleus and Pig-a mutant frequency) and serum thyroid hormone levels, following the exposure of male Fischer 344/DuCrl rats to 0.0, 0.5, 1.5, 3.0, 6.0, or 12.0 mg AA/kg bw-day in drinking water for 5, 15, or 31 days. Differentially expressed genes in both tissues provided marginal support for hormonal and genotoxic MOAs, which was consistent with negative/equivocal genotoxicity assay and marginal changes in thyroid hormone levels. Instead, there was a pronounced effect on calcium signaling/cytoskeletal genes in the thyroid. Benchmark dose modeling of RNA-sequencing data for the calcium signaling pathway suggests a point of departure (POD) of 0.68 mg/kg bw-day, which is consistent with a POD of 0.82 mg/kg bw-day derived from the thyroid 2-year cancer bioassay data. Overall, this study suggests a novel MOA for AA-induced thyroid carcinogenicity in male rats centered around perturbation of calcium signaling.

Publisher URL: www.sciencedirect.com/science

DOI: S0278691517303277

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.