3 years ago

Integrative Pathway Analysis of Metabolic Signature in Bladder Cancer: A Linkage to The Cancer Genome Atlas Project and Prediction of Survival

We used targeted mass spectrometry to study the metabolic fingerprint of urothelial cancer and determine whether the biochemical pathway analysis gene signature would have a predictive value in independent cohorts of patients with bladder cancer. Materials and Methods Pathologically evaluated, bladder derived tissues, including benign adjacent tissue from 14 patients and bladder cancer from 46, were analyzed by liquid chromatography based targeted mass spectrometry. Differential metabolites associated with tumor samples in comparison to benign tissue were identified by adjusting the p values for multiple testing at a false discovery rate threshold of 15%. Enrichment of pathways and processes associated with the metabolic signature were determined using the GO (Gene Ontology) Database and MSigDB (Molecular Signature Database). Integration of metabolite alterations with transcriptome data from TCGA (The Cancer Genome Atlas) was done to identify the molecular signature of 30 metabolic genes. Available outcome data from TCGA portal were used to determine the association with survival. Results We identified 145 metabolites, of which analysis revealed 31 differential metabolites when comparing benign and tumor tissue samples. Using the KEGG (Kyoto Encyclopedia of Genes and Genomes) Database we identified a total of 174 genes that correlated with the altered metabolic pathways involved. By integrating these genes with the transcriptomic data from the corresponding TCGA data set we identified a metabolic signature consisting of 30 genes. The signature was significant in its prediction of survival in 95 patients with a low signature score vs 282 with a high signature score (p = 0.0458). Conclusions Targeted mass spectrometry of bladder cancer is highly sensitive for detecting metabolic alterations. Applying transcriptome data allows for integration into larger data sets and identification of relevant metabolic pathways in bladder cancer progression.

Publisher URL: www.sciencedirect.com/science

DOI: S0022534716000720

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.