5 years ago

KCNQ Currents and Their Contribution to Resting Membrane Potential and the Excitability of Interstitial Cells of Cajal From the Guinea Pig Bladder

The presence of novel KCNQ currents was investigated in guinea pig bladder interstitial cells of Cajal and their contribution to the maintenance of the resting membrane potential was assessed. Materials and Methods Enzymatically dispersed interstitial cells of Cajal were patch clamped with K+ filled pipettes in voltage clamp and current clamp modes. Pharmacological modulators of KCNQ channels were tested on membrane currents and the resting membrane potential. Results Cells were stepped from −60 to 40 mV to evoke voltage dependent currents using a modified K+ pipette solution containing ethylene glycol tetraacetic acid (5 mM) and adenosine triphosphate (3 mM) to eliminate large conductance Ca activated K channel and Kadenosine triphosphate currents. Application of the KCNQ blockers XE991, linopirdine (Tocris Bioscience, Ellisville, Missouri) and chromanol 293B (Sigma®) decreased the outward current in concentration dependent fashion. The current-voltage relationship of XE991 sensitive current revealed a voltage dependent, outwardly rectifying current that activated positive to −60 mV and showed little inactivation. The KCNQ openers flupirtine and meclofenamic acid (Sigma) increased outward currents across the voltage range. In current clamp mode XE991 or chromanol 293B decreased interstitial cell of Cajal resting membrane potential and elicited the firing of spontaneous transient depolarizations in otherwise quiescent cells. Flupirtine or meclofenamic acid hyperpolarized interstitial cells of Cajal and inhibited any spontaneous electrical activity. Conclusions This study provides electrophysiological evidence that bladder interstitial cells of Cajal have KCNQ currents with a role in the regulation of interstitial cell of Cajal resting membrane potential and excitability. These novel findings provide key information on the ion channels present in bladder interstitial cells of Cajal and they may indicate relevant targets for the development of new therapies for bladder instability.

Publisher URL: www.sciencedirect.com/science

DOI: S0022534709005291

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.