3 years ago

Single-dose treatment with a humanized neutralizing antibody affords full protection of a human transgenic mouse model from lethal Middle East respiratory syndrome (MERS)-coronavirus infection

Middle East respiratory syndrome coronavirus (MERS-CoV) is continuously spreading and causing severe and fatal acute respiratory disease in humans. Prophylactic and therapeutic strategies are therefore urgently needed to control MERS-CoV infection. Here, we generated a humanized monoclonal antibody (mAb), designated hMS-1, which targeted the MERS-CoV receptor-binding domain (RBD) with high affinity. hMS-1 significantly blocked MERS-CoV RBD binding to its viral receptor, human dipeptidyl peptidase 4 (hDPP4), potently neutralized infection by a prototype MERS-CoV, and effectively cross-neutralized evolved MERS-CoV isolates through recognizing highly conserved RBD epitopes. Notably, single-dose treatment with hMS-1 completely protected hDPP4 transgenic (hDPP4-Tg) mice from lethal infection with MERS-CoV. Taken together, our data suggest that hMS-1 might be developed as an effective immunotherapeutic agent to treat patients infected with MERS-CoV, particularly in emergent cases.

Publisher URL: www.sciencedirect.com/science

DOI: S0166354216301917

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.