5 years ago

Supramolecular Self-Assembly in a Sub-micrometer Electrodic Cavity: Fabrication of Heat-Reversible π-Gel Memristor

Supramolecular Self-Assembly in a Sub-micrometer Electrodic Cavity: Fabrication of Heat-Reversible π-Gel Memristor
Paolo Samorì, Xiaolan Zhong, Emanuele Orgiu, Yifan Yao, Lei Zhang, Songlin Li, Marco A. Squillaci
The use of biomimetic approaches toward the production of nonsolid yet functional architectures holds potential for the emergence of novel device concepts. Gels, in particular those obtained via self-assembly of π-conjugated molecules, are dynamic materials possessing unique (opto)electronic properties. Their adaptive nature imparts unprecedented responsivity to various stimuli. Hitherto, a viable device platform to electrically probe in situ a sol–gel transition is still lacking. Here we describe the fabrication of a sub-micrometer electrodic cavity, which enables low-voltage electrical operation of π-gels. Thanks to the in situ supramolecular self-assembly of the π-gelator occurring within the cavity, we conceived a novel gel-based memristor whose sol–gel transition is reversible and can be controlled via heating and dc bias. This work opens perspectives toward the fabrication of a novel generation of nonsolid multiresponsive devices.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04347

DOI: 10.1021/jacs.7b04347

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.