3 years ago

Design of Oxygen Vacancy Configuration for Memristive Systems

Design of Oxygen Vacancy Configuration for Memristive Systems
Jennifer L.M. Rupp, Roman Korobko, Jonathan Spring, Rafael Schmitt
Oxide-based valence-change memristors are promising nonvolatile memories for future electronics that operate on valence-change reactions to modulate their electrical resistance. The memristance is associated with the movement of oxygen ionic carriers through oxygen vacancies at high electric field strength via structural defect modifications that are still poorly understood. This study employs a Ce1–xGdxO2–y solid solution model to probe the role of oxygen vacancies either set as “free” or as “immobile and clustered” for the resistive switching performance. The experiments, together with the defect chemical model, show that when the vacancies are set as “free”, a maximum in memristance is found for 20 mol % of GdO1.5 doping, which clearly coincides with the maximum in ionic conductivity. In contrast, for higher gadolinia concentration, the oxide exhibits only minor memristance, which originates from the decrease in structural symmetry, leading to the formation of “immobile” oxygen defect clusters, thereby reducing the density of mobile ionic carriers available for resistive switching. The research demonstrates guidelines for engineering of the oxide’s solid solution series to set the configuration of its oxygen vacancy defects and their mobility to tune the resistive switching for nonvolatile memory and logic applications.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03116

DOI: 10.1021/acsnano.7b03116

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.