5 years ago

Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution

Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution
In this work, we design and construct a novel 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf via a simple one-step surfactant-assisted solvothermal method for photocatalytic H2 generation. Its unusual 2D/2D heterojunction structure provides far more contact areas and much faster charge transport rate than the 2D/0D heterojunction structure of g-C3N4 nanosheet@ZnIn2S4 microsphere. More importantly, this unique 2D/2D heterojunction leads the g-C3N4 nanosheet@ZnIn2S4 nanoleaf composite to generate numerous intimate high-speed charge transfer nanochannels in the interfacial junctions, and which could considerably enhance the photogenerated charge separation and migration efficiency, thus yielding a remarkable visible-light-driven H2 evolution rate without the additive Pt cocatalyst (HER=2.78mmolh−1 g−1), nearly 69.5, 15.4, 8.2 and 1.9 times higher than that of pure g-C3N4 nanosheet, pure ZnIn2S4 microsphere, 2D/0D g-C3N4 nanosheet@ZnIn2S4 microsphere and pure ZnIn2S4 nanoleaf, respectively. Additionally, the 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf exhibits an outstanding stability and recyclability, manifesting a promising potential application in sustainable energy conversion. This work would provide a platform for the design and synthesis of binary heterojunction composite system with highly-efficient charge separation and transfer.

Publisher URL: www.sciencedirect.com/science

DOI: S092633731730807X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.