5 years ago

Wavelength-dependent charge carrier dynamics: the case of Ag2S/organic thin films heterojunction solar cells

Wavelength-dependent charge carrier dynamics: the case of Ag2S/organic thin films heterojunction solar cells
Although hybrid solar cells take advantages of both inorganic and organic semiconductors for high performance, there have not been comparably photoelectric conversion efficiencies as expected from this kind of solar cells till now. The photoelectric response behavior of inorganic/organic hybrid solar cells has been explained on the theory of inorganic solar cells, but the distinctive wavelength dependent photoelectric character of organic semiconductors has not been well considered. In this work, Ag2S/organic bulk heterojunction solar cell devices were designed and fabricated in-situ on indium tin oxide (ITO) based on the direct metal surface elemental reaction (DMSER) method, to understand the corresponding photoinduced charge carrier dynamics under different wavelength light. The commonly used small molecule Spiro-OMeTAD and polymeric PTB7-Th were selected as the organic components of the fabricated solar cells. In Ag2S/Spiro-OMeTAD, Ag2S donated the charge carriers and controlled the photoinduced charge carrier dynamics of the devices at both 355nm and 532nm lights. Under 532nm light, the PTB7-Th acted as hole transport materials (HTM) rather than charge carrier donor. These results indicated that hybrid thin films without wavelength dependent charge carrier dynamics is preferred for high performance solar cells.

Publisher URL: www.sciencedirect.com/science

DOI: S0013468617317917

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.