5 years ago

Boosting Efficiency and Stability of a Cu2ZnSnS4 Photocathode by Alloying Ge and Increasing Sulfur Pressure Simultaneously

Boosting Efficiency and Stability of a Cu2ZnSnS4 Photocathode by Alloying Ge and Increasing Sulfur Pressure Simultaneously
Cu2ZnSnS4 (CZTS) is a very promising absorber for solar driven photovoltaics and water splitting applications due to its high theoretical efficiency, low-cost and non-toxicity. Alloying Ge into CZTS is a potential method to improve the efficiency of CZTS-based devices. However, decomposition of Ge-CZTS during a high temperature sulfurization process usually leads to serious Ge element loss and secondary phases, which lower the performance of Ge-CZTS based devices. Moreover, inconsistent optimum Ge content over a wide range was reported in previous studies. To date, there is no reasonable explanation on this unusual phenomenon. In this study, for the first time, we found that an optimum Ge content sensitively depended on sulfur pressure. By increasing sulfur pressure and alloying Ge simultaneously, a high crystalline Ge-CZTS without Ge element loss and secondary phases was obtained, which remarkably increased a half-cell solar to hydrogen efficiency (HC-STH) of a CZTS photocathode 27 times. After further modification, the Ge-CZTS photocathode indicated a stable photocurrent density of 11.1mAcm−2 at 0 VRHE. To the best of our knowledge, it is the highest value among CZTS based photocathodes for solar water splitting. Moreover, the stability of a CZTS photocathode was also improved by increasing sulfur pressure and alloying Ge simultaneously due to higher crystalline of Ge-CZTS film.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517305475

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.