3 years ago

NaNbO3 Two-Dimensional Platelets Induced Highly Energy Storage Density in Trilayered Architecture Composites

NaNbO3 Two-Dimensional Platelets Induced Highly Energy Storage Density in Trilayered Architecture Composites
Polymer-based dielectric materials with high power density, high energy density, and broad operating temperature range are critical to the development of cost-efficient and lightweight capacitors for modern high-power electrical systems. Here, NaNbO3 (NN) /polymer composites, especially two-dimensional (2D) NN platelets, were used to create new composite films for energy storage applications for the first time. The trilayered architecture composites comprised of two outer layers of 2D NN platelets dispersed in a poly(vinylidene fluoride) (PVDF) matrix to provide high dielectric constant and a middle layer of pristine PVDF to offer high breakdown strength. The breakdown strength and energy density of the trilayered architecture composite films were improved significantly via tailoring the contents of the 2D NN platelets. The composite films with an optimized filler content illustrate a high discharge energy density of 13.5Jcm−3 at 400MVm−1, far more than the best commercial biaxially- oriented polypropylenes. Moreover, the composite films show a superior power density of 2.68MWcm−3 and ultra-fast discharge speed of 0.127 μs. Finite element simulation further revealed the breakdown strength and energy density of the composite films were much enhanced compared to the corresponding single layer composite films. Therefore, the new trilayered architecture composite films can be applied as an alternative promising high-performance electrostatic capacitor material.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517305426

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.