4 years ago

Structure-based protein engineering for thermostable and alkaliphilic enhancement of endo-β-1,4-xylanase for applications in pulp bleaching

In the pulp bleaching industry, enzymes with robust activity at high pH and temperatures are desirable for facilitating the pre-bleaching process with simplified processing and minimal use of chlorinated compounds. To engineer an enzyme for this purpose, we determined the crystal structure of the Xyn12.2 xylanase, a xylan-hydrolyzing enzyme derived from the termite gut symbiont metagenome, as the basis for structure-based protein engineering to improve Xyn12.2 stability in high heat and alkaline conditions. Engineered cysteine pairs that generated exterior disulfide bonds increased the k cat of Xyn12.2 variants and melting temperature at all tested conditions. These improvements led to up to 4.2-fold increases in catalytic efficiency at pH 9.0, 50°C for 1h and up to 3-fold increases at 60°C. The most effective variants, XynTT and XynTTTE, exhibited 2–3-fold increases in bagasse hydrolysis at pH 9.0 and 60°C compared to the wild-type enzyme. Overall, engineering arginines and phenylalanines for increased pK a and hydrogen bonding improved enzyme catalytic efficiency at high stringency conditions. These modifications were the keys to enhancing thermostability and alkaliphilicity in our enzyme variants, with XynTT and XynTTTE being especially promising for their application to the pulp and paper industry.

Publisher URL: www.sciencedirect.com/science

DOI: S0168165617315729

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.