5 years ago

Genome editing in Shiraia bambusicola using CRISPR-Cas9 system

Shiraia bambusicola can produce a type of hypocrellin, which is applied in antibacterial, antitumoral, and antiviral areas. Studies on the hypocrellin pathway have not been confirmed due to the deficiency of suitable genetic methods. We constructed a clustered regularly interspaced short palindromic repeat sequences (CRISPR)/Cas9 system in Shiraia sp. SUPER-H168 and targeted a polyketide synthase (SbaPKS). No hypocrellin production was detected in the ΔSbaPKS mutant. Relative expression levels of SbaPKS and its adjacent genes were extremely down-regulated in the ΔSbaPKS mutant compared to those in the wild strain. Subsequent pathogenicity assays showed that deletion of SbaPKS attenuated virulence on bamboo leaves. In contrast, restored hypocrellin in a SbaPKS overexpression strain generated necrotic lesions on bamboo leaves. These results suggest that SbaPKS is involved in hypocrellin biosynthesis and hypocrellin has an essential role in the virulence of S. bambusicola on bamboo leaves. The CRISPR/Cas9 system in Shiraia sp. will open an avenue for decoding the hypocrellin pathway and genome editing of other filamentous fungi. Strategies that disrupt hypocrellin biosynthesis may reduce the detriment of S. bambusicola.

Publisher URL: www.sciencedirect.com/science

DOI: S0168165617315092

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.