3 years ago

Looming Threats and Animacy: Reduced Responsiveness in Youth with Disrupted Behavior Disorders

James R. Blair, Harma Meffert, Laura C. Thornton, Stuart F. White, Soonjo Hwang, Stephen Sinclair, Joseph Leshin, Roberta Clanton, Dionne Coker-Appiah

Abstract

Theoretical models have implicated amygdala dysfunction in the development of Disruptive Behavior Disorders (DBDs; Conduct Disorder/Oppositional Defiant Disorder). Amygdala dysfunction impacts valence evaluation/response selection and emotion attention in youth with DBDs, particularly in those with elevated callous-unemotional (CU) traits. However, amygdala responsiveness during social cognition and the responsiveness of the acute threat circuitry (amygdala/periaqueductal gray) in youth with DBDs have been less well-examined, particularly with reference to CU traits. 31 youth with DBDs and 27 typically developing youth (IQ, age and gender-matched) completed a threat paradigm during fMRI where animate and inanimate, threatening and neutral stimuli appeared to loom towards or recede from participants. Reduced responsiveness to threat variables, including visual threats and encroaching stimuli, was observed within acute threat circuitry and temporal, lateral frontal and parietal cortices in youth with DBDs. This reduced responsiveness, at least with respect to the looming variable, was modulated by CU traits. Reduced responsiveness to animacy information was also observed within temporal, lateral frontal and parietal cortices, but not within amygdala. Reduced responsiveness to animacy information as a function of CU traits was observed in PCC, though not within the amygdala. Reduced threat responsiveness may contribute to risk taking and impulsivity in youth with DBDs, particularly those with high levels of CU traits. Future work will need to examine the degree to which this reduced response to animacy is independent of amygdala dysfunction in youth with DBDs and what role PCC might play in the dysfunctional social cognition observed in youth with high levels of CU traits.

Publisher URL: https://link.springer.com/article/10.1007/s10802-017-0335-0

DOI: 10.1007/s10802-017-0335-0

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.