3 years ago

Chronic administration of myristic acid improves hyperglycaemia in the Nagoya–Shibata–Yasuda mouse model of congenital type 2 diabetes

Fumio Sakane, Chiaki Murakami, Kai Iwata, Yuko Wada, Tamae Takato

Abstract

Aims/hypothesis

Previously, we demonstrated that myristic acid (14:0) increases levels of diacylglycerol kinase (DGK) δ, a key enzyme involved in type 2 diabetes exacerbation, and enhances glucose uptake in C2C12 myotube cells. Moreover, results from a population-based cohort study suggest that consumption of high-fat dairy products, which contain high amounts of myristic acid, is associated with a lower risk of developing type 2 diabetes. Taken together, we hypothesised that intake of myristic acid reduces type 2 diabetes risk in vivo. The aim of this study was to examine the glucose-lowering effect of myristic acid in Nagoya–Shibata–Yasuda (NSY) mice, a spontaneous model for studying obesity-related type 2 diabetes.

Methods

Male NSY mice were orally administered vehicle (n = 9), 300 mg/kg of myristic acid (n = 14) or 300 mg/kg of palmitic acid (16:0) (n = 9) every other day from 4 weeks of age. Glucose and insulin tolerance tests were performed at weeks 18, 24 and 30, and weeks 20 and 26, respectively. DGKδ levels were measured in skeletal muscle from 32–36-week-old NSY mice via western blot.

Results

Chronic oral administration of myristic acid ameliorated glucose tolerance (24–28% decrease in blood glucose levels during glucose tolerance tests) and reduced insulin-responsive blood glucose levels (~20% decrease) in male NSY mice compared with vehicle and palmitic acid groups at 24–30 weeks of age (the age at which the severity of type 2 diabetes is exacerbated in NSY mice). Myristic acid also attenuated the increase in body weight seen in NSY mice. Furthermore, the fatty acid increased DGKδ levels (~1.6-fold) in skeletal muscle of NSY mice.

Conclusions/interpretation

These results suggest that the chronic oral administration of myristic acid improves hyperglycaemia by decreasing insulin-responsive glucose levels and reducing body weight, and that the fatty acid accounts for the diabetes protective properties of high-fat dairy products. Myristic acid is a potential candidate for the prevention and treatment of type 2 diabetes mellitus and its related diseases.

Publisher URL: https://link.springer.com/article/10.1007/s00125-017-4366-4

DOI: 10.1007/s00125-017-4366-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.