5 years ago

Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation

Miljan Kuljanin, David A. Hess, Gillian I. Bell, Gilles A. Lajoie, Stephen E. Sherman

Abstract

Aims/hypothesis

Novel strategies to stimulate the expansion of beta cell mass in situ are warranted for diabetes therapy. The aim of this study was to elucidate the secretome of human bone marrow (BM)-derived multipotent stromal cells (MSCs) with documented islet regenerative paracrine function. We hypothesised that regenerative MSCs will secrete a unique combination of protein factors that augment islet regeneration.

Methods

Human BM-derived MSCs were examined for glucose-lowering capacity after transplantation into streptozotocin-treated NOD/severe combined immunodeficiency (SCID) mice and segregated into samples with regenerative (MSCR) vs nonregenerative (MSCNR) capacity. Secreted proteins associated with islet regenerative function were identified using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics. To functionally validate the importance of active Wnt signalling, we stimulated the Wnt-signalling pathway in MSCNR samples during ex vivo expansion using glycogen synthase kinase 3 (GSK3) inhibition (CHIR99201), and the conditioned culture media (CM) generated was tested for the capacity to support cultured human islet cell survival and proliferation in vitro.

Results

MSCR showed increased secretion of proteins associated with cell growth, matrix remodelling, immunosuppressive and proangiogenic properties. In contrast, MSCNR uniquely secreted proteins known to promote inflammation and negatively regulate angiogenesis. Most notably, MSCR maintained Wnt signalling via Wnt5A/B (~2.5-fold increase) autocrine activity during ex vivo culture, while MSCNR repressed Wnt signalling via Dickkopf-related protein (DKK)1 (~2.5-fold increase) and DKK3 secretion. Inhibition of GSK3 activity in MSCNR samples increased the accumulation of nuclear β-catenin and generated CM that augmented beta cell survival (13% increases) and proliferation when exposed to cultured human islets.

Conclusions/interpretation

Maintenance of active Wnt signalling within human MSCs promotes the secretion of matricellular and proangiogenic proteins that formulate a niche for islet regeneration.

Publisher URL: https://link.springer.com/article/10.1007/s00125-017-4355-7

DOI: 10.1007/s00125-017-4355-7

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.