5 years ago

Genetic and transcriptomic analyses of lignin- and lodging-related traits in Brassica napus

Jiana Li, Rui Wang, Kun Lu, Liezhao Liu, Andrew H. Paterson, Lijuan Wei, Xinfu Xu, Nengwen Yin, Xiujian Duan, Wei Li, Jia Wang, Hongju Jian


Key message

Candidate genes associated with lignin and lodging traits were identified by combining phenotypic, genotypic, and gene expression data in B. napus.


Brassica napus is one of the world’s most important oilseed crops, but its yield can be dramatically reduced by lodging, bending, and falling of its vertical stems. Lignin has been shown to contribute to stem mechanical strength. In this study, we found that the syringyl/guaiacyl (S/G) monolignol ratio exhibits a significant negative correlation with disease and lodging resistance. A total of 92 and 50 SNP and SSR loci, respectively, were found to be significantly associated with five traits, breaking force, breaking strength, lodging coefficient, acid detergent lignin content, and the S/G monolignol ratio using GWAS. To identify novel genes involved in lignin biosynthesis, transcriptome sequencing of high- (H) and low (L)-ADL content accessions was performed. The up-regulated genes were mainly involved in glycoside catabolic processes (especially glucosinolate catabolism) and cell wall biogenesis, while down-regulated genes were involved in glucosinolate biosynthesis, indicating that crosstalk exists between glucosinolate metabolic processes and lignin biosynthesis. Integrating this differential expression with the GWAS analysis, we identified four candidate genes regulating lignin, including glycosyl hydrolase (BnaA01g00480D), CYT1 (BnaA04g22820D), and two encoding transcription factors, SHINE1 (ERF family) and DAR6 (LIM family). This study provides insight into the genetic control of lodging and lignin in B. napus.

Publisher URL: https://link.springer.com/article/10.1007/s00122-017-2937-x

DOI: 10.1007/s00122-017-2937-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.