3 years ago

A genetic variant in the placenta-derived MHC class I chain-related gene A increases the risk of preterm birth in a Chinese population

Han Liu, Fei Luo, Yongjun Zhang, Min Yu, Yuexin Gan, Ying Tian, Haidong Cheng, Julian Little, Jun Zhang, Dan Chen, Weiye Wang, Yang Sun, Jing Li, Junjiao Song

Abstract

Preterm birth (PTB) is a predominant contributor to neonatal mortality and morbidity worldwide. However, the pathophysiology of PTB is not well-understood. We tested the hypothesis that single-nucleotide polymorphisms (SNPs) in the placenta-derived MHC class I chain-related gene A (MICA) could disrupt placental development and hence result in PTB. Nineteen selected SNPs in MICA were genotyped in a case–control study of 127 premature infants and 634 term controls in a Chinese Han population. We found that significantly increased PTB risk was associated with homozygosity for the A variant of rs2256318 (adjusted odds ratio = 6.97 and 95% confidence interval = 2.34–20.74 for A/A, compared with G/G genotype, P = 0.001). In addition, the A/A genotype of rs2256318 was associated with decreased placental weight of neonates (β = −25.331; P = 0.033). Furthermore, stratified analysis demonstrated that the A/A genotype of rs2256318 was associated with increased PTB risk in female group. In addition, we observed statistical interaction between the polymorphism rs2516448 and sex (P = 0.04). No significant differences in the distribution of haplotypes between cases and controls were detected. Our results indicate that the polymorphism of rs2256318 in MICA may contribute to the etiology of PTB through interfering with placental development. These findings need to be further validated in larger and multi-ethnic populations.

Publisher URL: https://link.springer.com/article/10.1007/s00439-017-1834-3

DOI: 10.1007/s00439-017-1834-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.