5 years ago

Defective splicing of the RB1 transcript is the dominant cause of retinoblastomas

Michael F. Murray, Eileen L. Murphy, Abraham Profeta, William G. Fairbrother, Rachel Soemedi, Christy L. Rhine, Kamil J. Cygan

Abstract

Defective splicing is a common cause of genetic diseases. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations with most mapping to the critical GT or AG nucleotides within the 5′ and 3′ splice sites. However, splicing mutations are underreported and the fraction of splicing mutations that compose all disease alleles varies greatly across disease gene. For example, there is a great excess (46%; ~threefold) of hereditary disease alleles that map to splice sites in RB1 that cause retinoblastoma. Furthermore, mutations in the exons and deeper intronic position may also affect splicing. We recently developed a high-throughput method that assays reported disease mutations for their ability to disrupt pre-mRNA splicing. Surprisingly, 27% of RB1-coding mutations tested also disrupt splicing. High-throughput in vitro spliceosomal assembly assay reveals heterogeneity in which stage of spliceosomal assembly is affected by splicing mutations. 58% of exonic splicing mutations were primarily blocked at the A complex in transition to the B complex and 33% were blocked at the B complex. Several mutants appear to reduce more than one step in the assembly. As RB1 splicing mutants are enriched in retinoblastoma disease alleles, additional priority should be allocated to this class of allele while interpreting clinical sequencing experiments. Analysis of the spectrum of RB1 variants observed in 60,706 exomes identifies 197 variants that have enough potential to disrupt splicing to warrant further consideration.

Publisher URL: https://link.springer.com/article/10.1007/s00439-017-1833-4

DOI: 10.1007/s00439-017-1833-4

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.