5 years ago

Metal Confinement through N-(9-Alkyl)fluorenyl-Substituted N-Heterocyclic Carbenes and Its Consequences in Gold-Catalysed Reactions Involving Enynes

Metal Confinement through N-(9-Alkyl)fluorenyl-Substituted N-Heterocyclic Carbenes and Its Consequences in Gold-Catalysed Reactions Involving Enynes
Patrick Pale, Loïc Toupet, Eric Brenner, Aurélien Blanc, Damien Hueber, Matthieu Teci, Dominique Matt
A series of gold(I) and gold(III) complexes containing bulky bis-N,N′-(9-alkylfluorenyl) heterocyclic carbene (RF-NHC) ligands have been prepared in high yields from appropriate imidazolinium, imidazolium and benzimidazolium salts. In all complexes, the carbene ligand provides high steric protection of the Au−X bond trans to the carbenic C atom. Irrespective of the metal oxidation state, the complexes showed high efficiency in a tandem 3,3-rearrangement/Nazarov reaction of an enynyl acetate. One of the AuIII complexes, [AuCl3(RF-NHC)], was further found to be suitable for the efficient cyclisation of a propargylcarboxamide. Furthermore, unlike related NHC–gold(I) complexes based on conventional bulky N-heterocyclic carbenes (notably, 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr), 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) and 1,3-(bis-tert-butyl)imidazol-2-ylidene (ItBu)), the studied [AuICl(RF-NHC)] complexes catalysed the conversion of a 1,6-enyne in the presence of indole into a single product; this arises from the embracing character of the ligand, which prevents indole addition on one of the catalytic intermediates. A structure/selectivity relationship was established for all carbenes tested that took into account percent buried volumes and topographic steric maps. The results illustrate the high potential of confining NHCs in organic synthesis. Hugs from NHCs: Gold(I) complexes based on N-heterocyclic carbenes (NHCs) with embracing character provide highly regioselective control of the addition of indole on a 1,6-enyne (see figure). Their performance is related to the ability of ligands to protect the gold binding site. The findings reported illustrate the high potential of confining NHCs in organic synthesis.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/chem.201701129

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.