3 years ago

Chemoenzymatic Assembly of Isotopically Labeled Folates

Chemoenzymatic Assembly of Isotopically Labeled Folates
William M. Dawson, Antonio Angelastro, Rudolf K. Allemann, E. Joel Loveridge, Louis Y. P. Luk
Pterin-containing natural products have diverse functions in life, but an efficient and easy scheme for their in vitro synthesis is not available. Here we report a chemoenzymatic 14-step, one-pot synthesis that can be used to generate 13C- and 15N-labeled dihydrofolates (H2F) from glucose, guanine, and p-aminobenzoyl-l-glutamic acid. This synthesis stands out from previous approaches to produce H2F in that the average yield of each step is >91% and it requires only a single purification step. The use of a one-pot reaction allowed us to overcome potential problems with individual steps during the synthesis. The availability of labeled dihydrofolates allowed the measurement of heavy-atom isotope effects for the reaction catalyzed by the drug target dihydrofolate reductase and established that protonation at N5 of H2F and hydride transfer to C6 occur in a stepwise mechanism. This chemoenzymatic pterin synthesis can be applied to the efficient production of other folates and a range of other natural compounds with applications in nutritional, medical, and cell-biological research.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06358

DOI: 10.1021/jacs.7b06358

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.