3 years ago

High-Performance Triboelectric Nanogenerators Based on Solid Polymer Electrolytes with Asymmetric Pairing of Ions

High-Performance Triboelectric Nanogenerators Based on Solid Polymer Electrolytes with Asymmetric Pairing of Ions
Sang-Woo Kim, Ju-Hyuck Lee, Sung Soo Kwak, Jeong Hwan Lee, Usman Khan, Hong-Joon Yoon, Tae-Yun Kim, Hanjun Ryu
In general, various kinds of surface modifications are utilized to enhance the power output performance of triboelectric nanogenerators (TENGs), but they typically have limited stability. Here, a new strategy of adding electrolytes with asymmetric ion pairing to polymer friction layers of TENGs is introduced in order to enhance their triboelectric property. Indeed, Kelvin probe force microscopy (KPFM) measurements show that an addition of phosphoric acid (H3PO4 ), an electrolyte with more cations than anions, to polyvinyl alcohol (PVA) can make it one of the most negative triboelectric materials; whereas, an addition of calcium chloride (CaCl2 ), an electrolyte with more anions than cations, to PVA can make it one of the most positive triboelectric materials. Furthermore, the TENGs based on such solid polymer electrolytes (SPEs) produce significantly higher power output than typical metal-polymer TENGs. Due to these unique features, SPEs are a promising triboelectric material for realizing high-performance TENGs for self-powered small electronics. High-performance triboelectric nanogenerators are demonstrated by adding electrolytes with asymmetric ion pairing to polymer contact layers in order to enhance their triboelectric property. Solid polymer electrolyte based nanogenerators produce dramatically higher power output than typical metal-polymer nanogenerators and reveal a stable doping effect. Therefore, solid polymer electrolytes are promising materials for realizing high-performance nanogenerators and self-powered small electronics.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201700289

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.