5 years ago

On the existence of HeHe bond in the endohedral fullerene Не2@C60

On the existence of HeHe bond in the endohedral fullerene Не2@C60
Eugene S. Kryachko, Tymofii Yu. Nikolaienko, Grygoriy A. Dolgonos
Twenty years have already been passed since the endohedral fullerene's void ceaselessly attracts attention of both, experimentalists and theoreticians, computational chemists and physicists in particular, who direct their efforts on computer simulations of encapsulating atoms and molecules into fullerene void and on unraveling the arising bonding patterns. We review recent developments on the endohedral He2@C60 fullerene, on its experimental observation and on related computational works. The two latter are the main concerns in the present work: on the one hand, there experimentally exists the He dimer embedded into C60 void. On the other, computational side, each He atom exhibits a negligible charge transfer to C60 resulting in that altogether, the He dimer exists as a fractionally charged (He+δ)2. Whether there exists a bond between these two helium atoms is the key question of the present work. Since a bond is a two-body creature, we assert that it suffices to define the bond on the basis of Löwdin's postulate of a molecule which we invoke to investigate such formation of the He dimer in a given C60 void in terms of the HeHe potential energy well. It is analytically demonstrated that this well enables to maintain at least one bound (ground) state, and therefore, according to Löwdin's postulate which is naturally anticipated within quantum theory, we infer that (He+δ)2 is a molecule, a diatomic, where two heliums are bonded to each other. Using these arguments, we also propose to extend the concept of stability of endohedral fullerenes. © 2017 Wiley Periodicals, Inc. Twenty years have already been passed since the endohedral fullerene's void ceaselessly attracts attention of both, experimentalists and theoreticians, computational chemists and physicists in particular, who direct their efforts on computer simulations of encapsulating atoms and molecules into fullerene void and on unraveling the arising bonding patterns. We review recent developments on the endohedral He2@C60 fullerene, on its experimental observation and on related computational works. The two latter are the main concerns in the present work: on the one hand, there experimentally exists the He dimer embedded into C60 void. On the other, computational side, each He atom exhibits a negligible charge transfer to C60 resulting in that altogether, the He dimer exists as a fractionally charged (He+δ)2. Whether there exists a bond between these two helium atoms is the key question of the present work. Since a bond is a two-body creature, we assert that it suffices to define the bond on the basis of Löwdin's postulate of a molecule which we invoke to investigate such formation of the He dimer in a given C60 void in terms of the HeHe potential energy well. It is analytically demonstrated that this well enables to maintain at least one bound (ground) state, and, therefore, according to Löwdin's postulate which is naturally anticipated within quantum theory, we infer that (He+δ)2 is a molecule, a diatomic, where two heliums are bonded to each other. Using these arguments, we also propose to extend the concept of stability of endohedral fullerenes.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcc.25061

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.