5 years ago

Rapid Fabrication of Highly Porous and Biocompatible Composite Textile Tubular Scaffold for Vascular Tissue Engineering

Rapid Fabrication of Highly Porous and Biocompatible Composite Textile Tubular Scaffold for Vascular Tissue Engineering
Three dimensional (3D) constructs for vascular tissue engineering applications require scaffolds with highly porous architectures, high biocompatibility and mechanical stability. In this paper, composite fibrous tubular scaffolds composed of different ratios of poly(epsilon-caprolactone) (PCL) and polyamide-6 (PA-6) were simultaneously deposited layer by layer by employing air jet spinning (AJS) textile technique. Specifically, we report on the optimal parameters for the fabrication of composite porous scaffolds that allow for precise control over the general scaffold architecture, as well as the physical and mechanical properties of the scaffolds. In vitro cell culture study was performed to investigate the influence of polymer composition and scaffold architecture on the adhesion of EA.hy926 human endothelial cells onto the fabricated scaffolds. The cell culture results indicated that a composite scaffold with low PA-6 fibrous content is the most promising substrate for EA.hy926 adhesion and proliferation. Based on the present findings, these highly porous composite tubular constructs support endothelial cell migration and cellular infiltration, and hence represent promising nano-fibrous scaffolds for vascular tissue engineering.

Publisher URL: www.sciencedirect.com/science

DOI: S0014305717308601

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.