4 years ago

Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide

Daohui Ou, Lei Dai, Chaofa Xu, Binghui Wu, Chengyi Hu, Peng Zhang, Gang Fu, Qing Qin, Xiaojing Zhao, Ruixuan Qin, Pengxin Liu, Nanfeng Zheng, Shiguang Mo, Pei Wang, Mei Chen

The electrochemical conversion of CO2 and H2O into syngas using renewably generated electricity is an attractive approach to simultaneously achieve chemical fixation of CO2 and storage of renewable energy. Developing cost-effective catalysts for selective electroreduction of CO2 into CO is essential to the practical applications of the approach. We report a simple synthetic strategy for the preparation of ultrathin Cu/Ni(OH)2 nanosheets as an excellent cost-effective catalyst for the electrochemical conversion of CO2 and H2O into tunable syngas under low overpotentials. These hybrid nanosheets with Cu(0)-enriched surface behave like noble metal nanocatalysts in both air stability and catalysis. Uniquely, Cu(0) within the nanosheets is stable against air oxidation for months because of the presence of formate on their surface. With the presence of atomically thick ultrastable Cu nanosheets, the hybrid Cu/Ni(OH)2 nanosheets display both excellent activity and selectivity in the electroreduction of CO2 to CO. At a low overpotential of 0.39 V, the nanosheets provide a current density of 4.3 mA/cm2 with a CO faradaic efficiency of 92%. No decay in the current is observed for more than 22 hours. The catalysts developed in this work are promising for building low-cost CO2 electrolyzers to produce CO.

Publisher URL: http://advances.sciencemag.org/cgi/content/short/3/9/e1701069

DOI: 10.1126/sciadv.1701069

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.