3 years ago

Role of Salt, Pressure, and Water Activity on Homogeneous Ice Nucleation

Role of Salt, Pressure, and Water Activity on Homogeneous Ice Nucleation
Chantal Valeriani, Eduardo Sanz, Carlos Vega, Jorge Ramirez, Jorge R. Espinosa, Guiomar D. Soria
Pure water can be substantially supercooled below the melting temperature without transforming into ice. The achievable supercooling can be enhanced by adding solutes or by applying hydrostatic pressure. Avoiding ice formation is of great importance in the cryopreservation of food or biological samples. In this Letter, we investigate the similarity between the effects of pressure and salt on ice formation using a combination of state-of-the-art simulation techniques. We find that both hinder ice formation by increasing the energetic cost of creating the ice–fluid interface. Moreover, we examine the widely accepted proposal that the ice nucleation rate for different pressures and solute concentrations can be mapped through the activity of water [Koop, L.; Tsias, P. Nature, 2000, 406, 611]. We show that such a proposal is not consistent with the nucleation rates predicted in our simulations because it does not include all parameters affecting ice nucleation. Therefore, even though salt and pressure have a qualitatively similar effect on ice formation, they cannot be quantitatively mapped onto one another.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01551

DOI: 10.1021/acs.jpclett.7b01551

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.