5 years ago

Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)

Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)
Pavel Lelyukh, Babak Anasori, Kathleen Maleski, Mohamed Alhabeb, Saleesha Sin, Yury Gogotsi, Leah Clark
Two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides (MXenes) were discovered in 2011. Since the original discovery, more than 20 different compositions have been synthesized by the selective etching of MAX phase and other precursors and many more theoretically predicted. They offer a variety of different properties, making the family promising candidates in a wide range of applications, such as energy storage, electromagnetic interference shielding, water purification, electrocatalysis, and medicine. These solution-processable materials have the potential to be highly scalable, deposited by spin, spray, or dip coating, painted or printed, or fabricated in a variety of ways. Due to this promise, the amount of research on MXenes has been increasing, and methods of synthesis and processing are expanding quickly. The fast evolution of the material can also be noticed in the wide range of synthesis and processing protocols that determine the yield of delamination, as well as the quality of the 2D flakes produced. Here we describe the experimental methods and best practices we use to synthesize the most studied MXene, titanium carbide (Ti3C2Tx), using different etchants and delamination methods. We also explain effects of synthesis parameters on the size and quality of Ti3C2Tx and suggest the optimal processes for the desired application.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02847

DOI: 10.1021/acs.chemmater.7b02847

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.