3 years ago

Density Functional Theory (DFT) Study To Unravel the Catalytic Properties of M-Exchanged MFI, (M = Be, Co, Cu, Mg, Mn, Zn) for the Conversion of Methane and Carbon Dioxide to Acetic Acid

Density Functional Theory (DFT) Study To Unravel the Catalytic Properties of M-Exchanged MFI, (M = Be, Co, Cu, Mg, Mn, Zn) for the Conversion of Methane and Carbon Dioxide to Acetic Acid
María C. Curet-Arana, Brian D. Montejo-Valencia, María M. Martínez-Iñesta, Yomaira J. Pagán-Torres
The conversion of greenhouse gases, such as CO2 and CH4, to value chemicals is a major challenge, because of the high stability of both molecules. In this study, density functional theory (DFT) calculations with long-range corrections and ONIOM were used to analyze the reaction mechanism for the conversion of CO2 and CH4 to acetic acid with MFI zeolite exchanged with Be, Co, Cu, Mg, Mn, and Zn cations. Our results demonstrate that (a) the highest reaction barrier on the reaction mechanism is CH4 dissociation, and the transition state energy in that step is directly related to the energy of the lowest unoccupied molecular orbital and the electronegativity of the metal exchanged zeolites; (b) a charge transfer between CH4 and the metal cation occurs simultaneously to CH4 dissociation; (c) CO2 insertion has a low energy barrier, and the protonation of the acetate species is spontaneous; (d) dispersion interactions are the main contributions to CH4 adsorption energies, whereas, in the rest of the steps of the reaction mechanism, the contribution of dispersion to the energies of reaction is almost negligible; (e) desorption of acetic acid could be promoted by the coadsorption of water; and (f) CH4 dissociation on Cu-MFI has an apparent activation energy of 11.5 kcal/mol, and a forward rate constant of 1.1 s–1 at 398 K.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b00844

DOI: 10.1021/acscatal.7b00844

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.