3 years ago

Profiling of potential brassinosteroids in different tissues of rape flower by stable isotope labeling - liquid chromatography/mass spectrometry analysis

Profiling of potential brassinosteroids in different tissues of rape flower by stable isotope labeling - liquid chromatography/mass spectrometry analysis
Brassinosteroids (BRs) play crucial roles in a variety of physiological processes in plants. The full elucidation of the functions of RBs relies on sensitive detection and accurate measurement of BRs in plants. However, the identification and quantification of BRs are challenging due to their low abundance as well as poor ionization efficiencies during mass spectrometry-based analysis. Herein, we developed a highly sensitive and selective strategy for profiling potential BRs in plants by stable isotope labeling liquid chromatography multiple reaction monitoring scan mass spectrometry (SIL-LC-MRM-MS) analysis. In the strategy, we used a pair of stable isotope labeling reagents 4-phenylaminomethyl-benzeneboronic acid (4-PAMBA) and d 5 -4-phenylaminomethyl-benzeneboronic acid (4-PAMBA-d 5 ) that can react with C22-C23 cis-diol on BRs for profiling potential BRs in plant tissues. The 4-PAMBA and 4-PAMBA-d 5 labeled BRs could generate two characteristic neutral loss under collision induced dissociation (CID), respectively, which is used to establish the MRM-based detection and screening. The precursor ions of BRs labeled with 4-PAMBA and 4-PAMBA-d 5 were set according to the reported structures of BRs, and the corresponding product ions were predicted by subtracting the lost neutral loss. In this respect, corresponding precursor ions and product ions in MRM transitions are formed. The peak pairs with a fixed mass difference, similar retention times and intensities were assigned as potential BRs. Using the developed SIL-LC-MRM-MS strategy, we successfully found 13 potential BR in different tissues of rape flower. Taken together, the SIL-LC-MRM-MS analytical strategy is promising for profiling potential BRs as well as other compounds that have the same functional moiety from complex biological samples.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017309911

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.