5 years ago

Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil
R. Maggie Connatser, Huamin Wang, Zhenglong Li, Harry M. Meyer, Samuel A. Lewis, Jae-Soon Choi, Alan H. Zacher, Daniel M. Santosa, Andrew W. Lepore
Low-temperature hydrogenation of carbonyl compounds can greatly improve the thermal stability of fast pyrolysis bio-oil, thereby enabling long-term operation of upgrading reactors which generally require high temperatures to achieve deep deoxygenation. The state-of-the-art hydrogenation catalysts, precious metals such as ruthenium, although effective in carbonyl hydrogenation, deactivate due to high sulfur sensitivity. In the present work, we showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion of carbonyl compounds. Furthermore, due to surface bifunctionality (i.e., both metallic and acid sites present), carbides catalyzed both C═O bond hydrogenation and C–C coupling reactions. Combined, these reactions transformed carbonyl compounds to more stable and higher molecular weight oligomeric compounds while consuming less hydrogen than pure hydrogenation. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking, and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization in the presence of sulfur. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of practical bio-oil stabilization technology.

Publisher URL: http://dx.doi.org/10.1021/acs.energyfuels.7b01707

DOI: 10.1021/acs.energyfuels.7b01707

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.