4 years ago

Multivalent Glycosylated Nanostructures To Inhibit Ebola Virus Infection

Multivalent Glycosylated Nanostructures To Inhibit Ebola Virus Infection
Beatriz M. Illescas, Rafael Delgado, Javier Rojo, Nazario Martín
The infection of humans by lethal pathogens such as Ebola and other related viruses has not been properly addressed so far. In this context, a relevant question arises: What can chemistry do in the search for new strategies and approaches to solve this emergent problem? Although initially a variety of known chemical compounds—for other purposes—proved disappointing in tests against Ebola virus (EBOV) infection, more recently, specific molecules have been prepared. In this Perspective, we present new approaches directed at the design of efficient entry inhibitors to minimize the development of resistance by viral mutations. In particular, we focus on dendrimers as well as fullerene C60—with a unique symmetrical and 3D globular structure—as biocompatible carbon platforms for the multivalent presentation of carbohydrates. The antiviral activity of these compounds in an Ebola pseudotyped infection model was in the low micromolar range for fullerenes with 12 and 36 mannoses. However, new tridecafullerenes—in which the central alkyne scaffold of [60]fullerene is connected to 12 sugar-containing [60]fullerene units (total 120 mannoses)—exhibit an outstanding antiviral activity with IC50 in the sub-nanomolar range! The multivalent presentation of specific carbohydrates by using 3D fullerenes as controlled biocompatible carbon scaffolds represents a real advance, being currently the most efficient molecules in vitro against EBOV infection. However, additional studies are needed to determine the optimized fullerene-based leads for practical applications.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b01683

DOI: 10.1021/jacs.7b01683

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.