3 years ago

Time-dependent effects of olanzapine treatment on the expression of histidine decarboxylase, H1 and H3 receptor in the rat brain: The roles in olanzapine-induced obesity

Antipsychotic treatment, particularly olanzapine and clozapine, induces severe obesity. The Histamine H1 receptor is considered to be an important contributor to olanzapine-induced obesity, however how olanzapine modulates the histaminergic system is not sufficiently understood. This study examined the effect of olanzapine on key molecules of the histaminergic system, including histidine decarboxylase (HDC), H1 receptor (H1R) and H3 receptor (H3R), in the brain at different stages of olanzapine-induced obesity. During short-term treatment (8-day), olanzapine increased hypothalamic HDC mRNA expression and H1R binding in the arcuate nucleus (Arc) and ventromedial hypothalamus (VMH), without changing H3R binding density. HDC mRNA and Arc H1R binding were positively correlated with increased food intake, feeding efficiency and weight gain. When the treatment was extended to 16 and 36 days, H1R binding was increased not only in the hypothalamic Arc and VMH but also in the brainstem dorsal vagal complex (DVC). The H1R bindings in the Arc, VMH and DVC were positively correlated with weight gain induced by olanzapine treatment. However, the expression of HDC and H3R mRNA was not increased. These results suggest that olanzapine time-dependently modulates histamine neurotransmission, which suggested the different neuronal mechanisms underlying different stages of weight gain development. Treatment targeting the H1R may be effective for both short- and long-term olanzapine-induced weight gain.

Publisher URL: www.sciencedirect.com/science

DOI: S0306453017304171

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.