5 years ago

A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis

Yufeng Deng, Rongguo Zhang, Yanping Xue, Kuan Chen, Tao Jiang

by Yanping Xue, Rongguo Zhang, Yufeng Deng, Kuan Chen, Tao Jiang

Hip Osteoarthritis (OA) is a common disease among the middle-aged and elderly people. Conventionally, hip OA is diagnosed by manually assessing X-ray images. This study took the hip joint as the object of observation and explored the diagnostic value of deep learning in hip osteoarthritis. A deep convolutional neural network (CNN) was trained and tested on 420 hip X-ray images to automatically diagnose hip OA. This CNN model achieved a balance of high sensitivity of 95.0% and high specificity of 90.7%, as well as an accuracy of 92.8% compared to the chief physicians. The CNN model performance is comparable to an attending physician with 10 years of experience. The results of this study indicate that deep learning has promising potential in the field of intelligent medical image diagnosis practice.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0178992

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.