5 years ago

Can A Multivariate Model for Survival Estimation in Skeletal Metastases (PATHFx) Be Externally Validated Using Japanese Patients?

Tatsuya Takagi, Hirotaka Kawano, Tabu Gokita, Akira Kawai, Jonathan A. Forsberg, Koichi Ogura, Keisuke Ae, Rikard Wedin, Yusuke Shinoda



Objective survival estimates are important when treating or studying outcomes in patients with skeletal metastases. One decision-support tool, PATHFx (www.pathfx.org) is designed to predict each patient’s postsurgical survival trajectory at 1, 3, 6, and 12 months in patients undergoing stabilization for skeletal metastases. PATHFx has been externally validated in various western centers, but it is unknown whether it may be useful in Asian patient populations.


We asked (1) whether the PATHFx models are as predictive in Japanese patients by estimating the area under the receiver operator characteristic curve (AUC); we considered an AUC greater than 0.7 as an adequate predictive value. We also (2) performed decision curve analysis at various times to determine whether and how PATHFx should be used clinically at those times.

Patients and Methods

A Bayesian model is a statistical method to explore conditional, probabilistic relationships between variables to estimate the likelihood of an outcome using observed data. We applied the PATHFx Bayesian models to an independent dataset containing the records of patients who underwent skeletal stabilization for metastatic bone disease at one of five Japanese referral centers and had a followup longer than 12 months for survivors. Of 270 patients in the database, we excluded nine patients from analysis because their followup was less than 12 months, and finally we included 261 patients in the analysis. Data examined included age at the time of surgery, sex, indication for surgery (impending fracture or completed pathologic fracture), number of bone metastases (solitary or multiple), presence or absence of visceral or lymph node metastases, preoperative hemoglobin concentration, absolute lymphocyte count, and the primary oncologic diagnosis. We performed receiver operating characteristic curve analysis and estimated the AUC as a measure of discriminatory ability. Decision curve analysis was performed to determine if and how the models should be used in the clinical setting.


The AUCs for the 1-, 3-, 6-, and 12-month models were 0.77 (95% CI, 0.63–0.86), 0.80 (95% CI, 0.72–0.87), 0.83 (95% CI, 0.77–0.89), and 0.80 (95% CI, 0.75–0.86), respectively. Decision analysis indicated that the models conferred a positive net benefit (above the lines assuming none or all survive at each time) although the CIs of the AUC for 1 month were wide, suggesting that this dataset could not adequately predict 1-month survival.


Our findings show PATHFx is suitable for clinical use in Japan and may be used to guide surgical decision making or as a risk stratification method in support of clinical trials involving Japanese patients at 3, 6, and 12 months. More studies will be necessary to confirm the validity of the 1-month survival predictions of this mode. Other patient populations will need to be studied to confirm its usefulness in other non-Western and non-Japanese populations.

Level of Evidence

Level II, prognostic study.

Publisher URL: https://link.springer.com/article/10.1007/s11999-017-5389-3

DOI: 10.1007/s11999-017-5389-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.