5 years ago

The effect of hydroxyapatite nanoparticles on mechanical behavior and biological performance of porous shape memory polyurethane scaffolds

Akira Teramoto, Hong Xia, Juhong Yu, Qing-Qing Ni
The scaffold which provides space for cell growth, proliferation and differentiation, is a key factor in bone tissue engineering. However, improvements in scaffold design are needed to precisely match the irregular boundaries of bone defects as well as facilitate clinical application. In this study, controllable three-dimensional (3D) porous shape memory polyurethane/nano-hydroxyapatite (SMPU/nHAP) composite scaffold was successfully fabricated for bone defect reparation. Detailed studies were performed to evaluate its structure, apparent density, porosity and mechanical properties, emphasizing the contribution of nHAP particles on shape recovery behaviors and biological performance in vitro. The effect of nHAP particles in porous SMPU/nHAP composite scaffold was found to enhance the compression resistance by 37%, shorten the compression recovery time by 41%, reduce the tensile resistance by 78%, reach the shape recovery ratio of 99% and promote the cell proliferation by 13% after 7 days of culture. These results revealed that the 3D structure and aperture of as-prepared scaffold were controllable. And in minimally invasive surgery and bone repair surgery, this porous composite scaffold could significantly reduce the operative time and promote the bone cell growth. Therefore, this porous SMPU/nHAP composite scaffold design has potential applications for the bone tissue engineering. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jbm.a.36214

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.