4 years ago

In vitro evaluation of 3D bioprinted tri-polymer network scaffolds for bone tissue regeneration

Stephanie T. Bendtsen, Mei Wei
In vitro evaluations provide vital information on the ability of tissue engineered scaffolds to support cell life and promote natural physiological behaviors in culture. Such assessments are necessary to conduct before implementation of the scaffolds for tissue healing in vivo. The scaffold extracellular matrix must provide the biochemical and mechanical cues necessary to promote cellular attachment, migration and proliferation before differentiation and new tissue deposition can occur. In this study, an in vitro evaluation was conducted to assess the ability of scaffolds 3D printed with a previously developed alginate-polyvinyl alcohol-hydroxyapatite formulation to promote proliferation of encapsulated MC3T3 cells. A systematic investigation was conducted to increase cell proliferation, and it was determined that the concentration and duration of the calcium bath have a less effect on proliferation than the composition of the formulation itself. Collagen gel was incorporated into the formulation to provide cells with adhesion sites necessary to sufficiently attach to the matrix. Enhanced proliferation was achieved within scaffolds of increased collagen content and sufficient crosslinking. This highlighted the importance of the synergistic effect created as a result of sufficient ligand density coupled with appropriate scaffold mechanical rigidity to provide a suitable environment for proliferation. Thus, these 3D printed tri-polymer scaffolds have the ability to support cell proliferation and have potential to promote cell differentiation and new bone tissue deposition. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jbm.a.36184

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.