3 years ago

Titanium-released from dental implant enhances pre-osteoblast adhesion by ROS modulating crucial intracellular pathways

Bezerra F. J. B., Crulhas B. P., Silva R. A., Rossi M. C., Zambuzzi W. F., Padilha P., Nascimento A. S., Pedrosa V. A., Fernandes C. J. C.
It is important to understand the cellular and molecular events that occur at the cell–material interface of implants used for bone repair. The mechanisms involved in the initial stages of osteoblast interactions with the surface of the implant material must be decisive for cell fating surrounding them. In order to address this issue, we decided to investigate if conditioned medium for dental implants was able to modulate murine pre-osteoblast metabolism. First, we determined the concentration of titanium (Ti)-containing conditioned medium and found that it was 2-fold increased (p < 0.0001). We have reported that this conditioned medium significantly up-modulated pre-osteoblast adhesion up to 24 h (p < 0.0001). In parallel, our results showed that both phosphorylations of FAK (focal adhesion kinase) at Y397 (p < 0.0011) and Cofilin at Ser03 (p < 0.0053) were also up-modulated, as well as for Rac1 expression (p < 0.0175); both of them are involved with cell adaptation by rearranging cytoskeleton actin filaments. Thereafter, Ti-containing medium stimulated ROS (reactive oxygen species) production by pre-osteoblast cells, and it is very possible that ROS compromised PTP-1B (protein tyrosine phosphatase 1B) activation since PTP1B was down-phosphorylated (p < 0.0148). The low PTP activity guarantees the phosphorylation of FAK at Y-residue, causing better pre-osteoblast adhesion in response to Ti-containing medium. Altogether, these data indicate that ROS indirectly modulate FAK phosphorylation in response to Ti-released from dental implants. Taken the results in account, these data showed for the first time that the implanted dental device is able to dynamically affect surrounding tissues, mainly by promoting a better performance of the pre-osteoblast cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2017.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jbm.a.36150

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.