5 years ago

Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material

Optimized Separation of Acetylene from Carbon Dioxide and Ethylene in a Microporous Material
Libo Li, Hadi Arman, Rui-Biao Lin, Bin Li, Banglin Chen, Hui Wu, Wei Zhou, Rong-Guang Lin
Selective separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) needs specific porous materials whose pores can realize sieving effects while pore surfaces can differentiate their recognitions for these molecules of similar molecular sizes and physical properties. We report a microporous material [Zn(dps)2(SiF6)] (UTSA-300, dps = 4,4′-dipyridylsulfide) with two-dimensional channels of about 3.3 Å, well-matched for the molecular sizes of C2H2. After activation, the network was transformed to its closed-pore phase, UTSA-300a, with dispersed 0D cavities, accompanied by conformation change of the pyridyl ligand and rotation of SiF62– pillars. Strong C–H···F and π–π stacking interactions are found in closed-pore UTSA-300a, resulting in shrinkage of the structure. Interestingly, UTSA-300a takes up quite a large amounts of acetylene (76.4 cm3 g–1), while showing complete C2H4 and CO2 exclusion from C2H2 under ambient conditions. Neutron powder diffraction and molecular modeling studies clearly reveal that a C2H2 molecule primarily binds to two hexafluorosilicate F atoms in a head-on orientation, breaking the original intranetwork hydrogen bond and subsequently expanding to open-pore structure. Crystal structures, gas sorption isotherms, molecular modeling, experimental breakthrough experiment, and selectivity calculation comprehensively demonstrated this unique metal–organic framework material for highly selective C2H2/CO2 and C2H2/C2H4 separation.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03850

DOI: 10.1021/jacs.7b03850

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.