3 years ago

Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants

Investigating DNA-, RNA-, and protein-based features as a means to discriminate pathogenic synonymous variants
Yunlong Liu, Yuedong Yang, Yaoqi Zhou, Ping Zhang, David N. Cooper, Bela Stantic, Matthew Mort, Lukas Folkman, Mark Livingstone
Synonymous single-nucleotide variants (SNVs), although they do not alter the encoded protein sequences, have been implicated in many genetic diseases. Experimental studies indicate that synonymous SNVs can lead to changes in the secondary and tertiary structures of DNA and RNA, thereby affecting translational efficiency, cotranslational protein folding as well as the binding of DNA-/RNA-binding proteins. However, the importance of these various features in disease phenotypes is not clearly understood. Here, we have built a support vector machine (SVM) model (termed DDIG-SN) as a means to discriminate disease-causing synonymous variants. The model was trained and evaluated on nearly 900 disease-causing variants. The method achieves robust performance with the area under the receiver operating characteristic curve of 0.84 and 0.85 for protein-stratified 10-fold cross-validation and independent testing, respectively. We were able to show that the disease-causing effects in the immediate proximity to exon–intron junctions (1–3 bp) are driven by the loss of splicing motif strength, whereas the gain of splicing motif strength is the primary cause in regions further away from the splice site (4–69 bp). The method is available as a part of the DDIG server at http://sparks-lab.org/ddig. The article presents a machine learning model, termed DDIG-SN, as a means to discriminate disease-causing synonymous variants. For training DDIG-SN, we evaluated a range of DNA-, RNA-, and protein-level features. We were able to show that the disease-causing effects in the immediate proximity to exon-intron junctions (1–3 bp) are driven by the loss of splicing motif strength, whereas the gain of splicing motif strength is the primary cause in regions further away from the splice site (4–69 bp).

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/humu.23283

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.