5 years ago

EBI2 contributes to the induction of thymic central tolerance in mice by promoting rapid motility of medullary thymocytes

EBI2 contributes to the induction of thymic central tolerance in mice by promoting rapid motility of medullary thymocytes
Hiran M. Thyagarajan, Lauren I.R. Ehrlich, Jessica N. Lancaster, Zicheng Hu, Sanghee Ki
Maturing thymocytes enter the thymic medulla, where they encounter numerous self-antigens presented by antigen presenting cells (APCs). Those thymocytes that are strongly self-reactive undergo either negative selection or diversion into the regulatory T-cell lineage. Although the majority of the proteome is expressed in the medulla, many self-antigens are expressed by only a minor fraction of medullary APCs; thus, thymocytes must efficiently enter the medulla and scan APCs to ensure central tolerance. Chemokine receptors promote lymphocyte migration, organization within tissues, and interactions with APCs in lymphoid organs. The chemokine receptor EBI2 governs localization of T cells, B cells, and dendritic cells (DCs) during immune responses in secondary lymphoid organs. However, the role of EBI2 in thymocyte development has not been elucidated. Here, we demonstrate that EBI2 is expressed by murine CD4+ single positive (CD4SP) thymocytes and thymic DCs. EBI2 deficiency alters the TCR repertoire, but does not grossly impact thymocyte cellularity or subset distribution. EBI2 deficiency also impairs negative selection of OT-II TCR transgenic thymocytes responding to an endogenous self-antigen. Two-photon imaging revealed that EBI2 deficiency results in reduced migration and impaired medullary accumulation of CD4SP thymocytes. These data identify a role for EBI2 in promoting efficient thymic central tolerance. Developing T cells must enter the thymic medulla and scan numerous antigen presenting cells to encounter the full range of self-antigens required to induce central tolerance. EBI2, a chemokine receptor expressed by immature medullary thymocytes, promotes thymocyte medullary accumulation and rapid motility, thus contributing to the induction of central tolerance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/eji.201747020

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.