5 years ago

Persistent accumulation of gut macrophages with impaired phagocytic function correlates with SIV disease progression in macaques

Persistent accumulation of gut macrophages with impaired phagocytic function correlates with SIV disease progression in macaques
Simon M. Barratt-Boyes, Anthea L. Bouwer, Zachary D. Swan, Elizabeth R. Wonderlich
The contribution of macrophages in the gastrointestinal tract to disease control or progression in HIV infection remains unclear. To address this question, we analyzed CD163+ macrophages in ileum and mesenteric lymph nodes (LN) from SIV-infected rhesus macaques with dichotomous expression of controlling MHC class I alleles predicted to be SIV controllers or progressors. Infection induced accumulation of macrophages into gut mucosa in the acute phase that persisted in progressors but was resolved in controllers. In contrast, macrophage recruitment to mesenteric LNs occurred only transiently in acute infection irrespective of disease outcome. Persistent gut macrophage accumulation was associated with CD163 expression on α4β7+CD16+ blood monocytes and correlated with epithelial damage. Macrophages isolated from intestine of progressors had reduced phagocytic function relative to controllers and uninfected macaques, and the proportion of phagocytic macrophages negatively correlated with mucosal epithelial breach, lamina propria Escherichia coli density, and plasma virus burden. Macrophages in intestine produced low levels of cytokines regardless of disease course, while mesenteric LN macrophages from progressors became increasingly responsive as infection advanced. These data indicate that noninflammatory CD163+ macrophages accumulate in gut mucosa in progressive SIV infection in response to intestinal damage but fail to adequately phagocytose debris, potentially perpetuating their recruitment. Macaques with progressive SIV infection have damaged gut mucosa that contains a high number of macrophages. These macrophages are noninflammatory but poorly phagocytic and fail to adequately clear tissue debris. This impaired phagocytic function potentially leads to persistent macrophage recruitment to the mucosa.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/eji.201646904

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.