5 years ago

Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8+ T-cell immunity

Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8+ T-cell immunity
Qing Liu, Yunyun Wu, Wei Yin, Yan Song, Rui He
All-trans retinoic acid (atRA), the main biologically active metabolite of vitamin A, has been implicated in immunoregulation and anti-cancer. A recent finding that vitamin A could decrease the risk of melanoma in humans indicates the beneficial role of atRA in melanoma. However, it remains unknown whether topical application of atRA could inhibit melanoma growth by influencing tumour immunity. We demonstrate topical application of tretinoin ointment (atRA as the active ingredient) effectively inhibited B16F10 melanoma growth. This is accompanied by markedly enhanced CD8+ T-cell responses, as evidenced by significantly increased proportions of effector CD8+ T cells expressing granzyme B, tumour necrosis factor-α, or interferon-γ, and Ki67+ proliferating CD8+ T cells in atRA-treated tumours compared with vaseline controls. Furthermore, topical atRA treatment promoted the differentiation of effector CD8+ T cells in draining lymph nodes (DLN) of tumour-bearing mice. Interestingly, atRA did not affect tumoral CD4+ T-cell response, and even inhibited the differentiation of interferon-γ-expressing T helper type 1 cells in DLN. Importantly, we demonstrated that the tumour-inhibitory effect of atRA was partly dependent on CD8+ T cells, as CD8+ T-cell depletion restored tumour volumes in atRA-treated mice, which, however, was still significantly smaller than those in vaseline-treated mice. Finally, we demonstrated that atRA up-regulated MHCI expression in B16F10 cells, and DLN cells from tumour-bearing mice had a significantly higher killing rate when culturing with atRA-treated B16F10 cells. Hence, our study demonstrates that topical atRA treatment effectively inhibits melanoma growth partly by promoting the differentiation and the cytotoxic function of effector CD8+ T cells. Topical application of All-trans retinoic acid (atRA) effectively inhibited B16F10 melanoma growth, which is accompanied by markedly enhanced CD8+ T-cell responses, in tumour sites and draining lymph nodes (DLN). Tumour-inhibitory effect of atRA was partly dependent on CD8+ T cells, as CD8+ T-cell depletion partly restored tumour growth in atRA-treated mice. atRA directly up-regulated MHCI expression in B16F10 cells, thereby rendering them sensitive to CD8+ T-cell-mediated killing.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/imm.12768

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.