5 years ago

Inter-subject alignment of MEG datasets in a common representational space

Qiong Zhang, Robert E. Kass, Jelmer P. Borst, John R. Anderson
Pooling neural imaging data across subjects requires aligning recordings from different subjects. In magnetoencephalography (MEG) recordings, sensors across subjects are poorly correlated both because of differences in the exact location of the sensors, and structural and functional differences in the brains. It is possible to achieve alignment by assuming that the same regions of different brains correspond across subjects. However, this relies on both the assumption that brain anatomy and function are well correlated, and the strong assumptions that go into solving the under-determined inverse problem given the high-dimensional source space. In this article, we investigated an alternative method that bypasses source-localization. Instead, it analyzes the sensor recordings themselves and aligns their temporal signatures across subjects. We used a multivariate approach, multiset canonical correlation analysis (M-CCA), to transform individual subject data to a low-dimensional common representational space. We evaluated the robustness of this approach over a synthetic dataset, by examining the effect of different factors that add to the noise and individual differences in the data. On an MEG dataset, we demonstrated that M-CCA performs better than a method that assumes perfect sensor correspondence and a method that applies source localization. Last, we described how the standard M-CCA algorithm could be further improved with a regularization term that incorporates spatial sensor information. Hum Brain Mapp 38:4287–4301, 2017. © 2017 Wiley Periodicals, Inc.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/hbm.23689

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.