5 years ago

Learned control of inter-hemispheric connectivity: Effects on bimanual motor performance

Diljit Singh Kajal, Ranganatha Sitaram, Eberhard Fetz, Jürgen Mellinger, Niels Birbaumer, Matthew D. Sacchet, Christoph Braun, Sergio Ruiz
Bimanual movements involve the interactions between both primary motor cortices. These interactions are assumed to involve phase-locked oscillatory brain activity referred to as inter-hemispheric functional coupling. So far, inter-hemispheric functional coupling has been investigated as a function of motor performance. These studies report mostly a negative correlation between the performance in motor tasks and the strength of functional coupling. However, correlation might not reflect a causal relationship. To overcome this limitation, we opted for an alternative approach by manipulating the strength of inter-hemispheric functional coupling and assessing bimanual motor performance as a dependent variable. We hypothesize that an increase/decrease of functional coupling deteriorates/facilitates motor performance in an out-of-phase bimanual finger-tapping task. Healthy individuals were trained to volitionally regulate functional coupling in an operant conditioning paradigm using real-time magnetoencephalography neurofeedback. During operant conditioning, two discriminative stimuli were associated with upregulation and downregulation of functional coupling. Effects of training were assessed by comparing motor performance prior to (pre-test) and after the training (post-test). Participants receiving contingent feedback learned to upregulate and downregulate functional coupling. Comparing motor performance, as indexed by the ratio of tapping speed for upregulation versus downregulation trials, no change was found in the control group between pre- and post-test. In contrast, the group receiving contingent feedback evidenced a significant decrease of the ratio implicating lower tapping speed with stronger functional coupling. Results point toward a causal role of inter-hemispheric functional coupling for the performance in bimanual tasks. Hum Brain Mapp 38:4353–4369, 2017. © 2017 Wiley Periodicals, Inc.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/hbm.23663

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.