5 years ago

Hydrogen Bonding Environment of the N3–H Group of Flavin Mononucleotide in the Light Oxygen Voltage Domains of Phototropins

Hydrogen Bonding Environment of the N3–H Group of Flavin Mononucleotide in the Light Oxygen Voltage Domains of Phototropins
Yasuzo Nishina, Atsushi Yamamoto, Takayuki Koyama, Tatsuya Iwata, Hideki Kandori, Satoru Tokutomi, Kiyoshi Shiga, Masashi Unno, Dai Nozaki
The light oxygen voltage (LOV) domain is a flavin-binding blue-light receptor domain, originally found in a plant photoreceptor phototropin (phot). Recently, LOV domains have been used in optogenetics as the photosensory domain of fusion proteins. Therefore, it is important to understand how LOV domains exhibit light-induced structural changes for the kinase domain regulation, which enables the design of LOV-containing optogenetics tools with higher photoactivation efficiency. In this study, the hydrogen bonding environment of the N3–H group of flavin mononucleotide (FMN) of the LOV2 domain from Adiantum neochrome (neo) 1 was investigated by low-temperature Fourier transform infrared spectroscopy. Using specifically 15N-labeled FMN, [1,3-15N2]FMN, the N3–H stretch was identified at 2831 cm–1 for the unphotolyzed state at 150 K, indicating that the N3–H group forms a fairly strong hydrogen bond. The N3–H stretch showed temperature dependence, with a shift to lower frequencies at ≤200 K and to higher frequencies at ≥250 K from the unphotolyzed to the intermediate states. Similar trends were observed in the LOV2 domains from Arabidopsis phot1 and phot2. By contrast, the N3–H stretch of the Q1029L mutant of neo1-LOV2 and neo1-LOV1 was not temperature dependent in the intermediate state. These results seemed correlated with our previous finding that the LOV2 domains show the structural changes in the β-sheet region and/or the adjacent Jα helix of LOV2 domain, but that such structural changes do not take place in the Q1029L mutant or neo1-LOV1 domain. The environment around the N3–H group was also investigated.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00057

DOI: 10.1021/acs.biochem.7b00057

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.