5 years ago

Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells [Developmental Biology]

Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells [Developmental Biology]
Mark E. Parrish, Robb Krumlauf, Brian D. Slaughter, Jeffrey J. Lange, Bony De Kumar, Hugo J. Parker, Ariel Paulson, Jay R. Unruh

Homeobox a1 (Hoxa1) is one of the most rapidly induced genes in ES cell differentiation and it is the earliest expressed Hox gene in the mouse embryo. In this study, we used genomic approaches to identify Hoxa1-bound regions during early stages of ES cell differentiation into the neuro-ectoderm. Within 2 h of retinoic acid treatment, Hoxa1 is rapidly recruited to target sites that are associated with genes involved in regulation of pluripotency, and these genes display early changes in expression. The pattern of occupancy of Hoxa1 is dynamic and changes over time. At 12 h of differentiation, many sites bound at 2 h are lost and a new cohort of bound regions appears. At both time points the genome-wide mapping reveals that there is significant co-occupancy of Nanog (Nanog homeobox) and Hoxa1 on many common target sites, and these are linked to genes in the pluripotential regulatory network. In addition to shared target genes, Hoxa1 binds to regulatory regions of Nanog, and conversely Nanog binds to a 3′ enhancer of Hoxa1. This finding provides evidence for direct cross-regulatory feedback between Hoxa1 and Nanog through a mechanism of mutual repression. Hoxa1 also binds to regulatory regions of Sox2 (sex-determining region Y box 2), Esrrb (estrogen-related receptor beta), and Myc, which underscores its key input into core components of the pluripotential regulatory network. We propose a model whereby direct inputs of Nanog and Hoxa1 on shared targets and mutual repression between Hoxa1 and the core pluripotency network provides a molecular mechanism that modulates the fine balance between the alternate states of pluripotency and differentiation.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.