5 years ago

LSD1/KDM1A Maintains Genome-wide Homeostasis of Transcriptional Enhancers

B., Macfarlan, Agarwal, Iwase, T. S., S., R. S., Ren, E., Brookes, P. M., Porter, Y., Garay, Murata-Nakamura
Transcriptional enhancers enable exquisite spatiotemporal control of gene expression in metazoans. Enrichment of mono-methylation of histone H3 lysine 4 (H3K4me1) is a major chromatin signature that distinguishes enhancers from gene promoters. Lysine Specific Demethylase 1 (LSD1), an enzyme specific for demethylating H3K4me2/me1, has been shown to decommission stem cell enhancers during the differentiation of mES cells (mESC). However, the roles of LSD1 in undifferentiated mESC remain obscure. Here, we show that LSD1 occupies a large fraction of enhancers (63%) that are primed with binding of transcription factors (TFs) and H3K4me1 in mESC. In contrast, LSD1 is largely absent at latent enhancers, which are not yet primed. Unexpectedly, LSD1 levels at enhancers exhibited a clear positive correlation with its substrate, H3K4me2 and enhancer activity. These enhancers gain additional H3K4 methylation upon the loss of LSD1 in mESC. The aberrant increase in H3K4me was accompanied with increases in enhancer H3K27 acetylation and expression of enhancer RNAs (eRNAs) and their target genes. In post-mitotic neurons, loss of LSD1 resulted in premature activation of enhancers and genes that are normally induced after neuronal activation. These results demonstrate that LSD1 is a versatile suppressor of primed enhancers, and is involved in homeostasis of enhancer activity.

Publisher URL: http://biorxiv.org/cgi/content/short/146357v1

DOI: 10.1101/146357

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.