3 years ago

Synthesis of 2D Imine-Linked Covalent Organic Frameworks through Formal Transimination Reactions

Synthesis of 2D Imine-Linked Covalent Organic Frameworks through Formal Transimination Reactions
William R. Dichtel, Edon Vitaku
Covalent organic frameworks (COFs) are crystalline, permanently porous, two-dimensional or three-dimensional polymers with tunable topology and functionality. COFs linked with imines or β-ketoenamines are more chemically stable than their boron-linked counterparts, making them more promising for a broad range of applications, including energy storage devices, proton-conductive membranes, and catalyst supports. We report a general and scalable method for synthesizing imine- and β-ketoenamine-linked COFs based on the formal transimination of N-aryl benzophenone imines. These substrates are often the synthetic precursors of traditional polyfunctional aryl amine monomers and are more stable, soluble, and easy to handle and purify. The imine- and β-ketoenamine-linked COFs obtained from this approach show excellent materials quality, as characterized by X-ray diffraction and surface area analysis. The most optimized COF exhibited a Brunauer–Emmett–Teller surface area (>2600 m2/g) very close to its theoretical value (2830 m2/g). This method is amenable to both conventional solvothermal conditions and microwave heating, providing similar or even improved materials quality with shorter reaction times. The high materials quality, scalability, and availability of benzophenone imine monomers are all attractive features of this approach.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b06913

DOI: 10.1021/jacs.7b06913

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.